Cellular inorganic carbon fluxes in Trichodesmium: a combined approach using measurements and modelling
نویسندگان
چکیده
To predict effects of climate change on phytoplankton, it is crucial to understand how their mechanisms for carbon acquisition respond to environmental conditions. Aiming to shed light on the responses of extra- and intracellular inorganic C (Ci) fluxes, the cyanobacterium Trichodesmium erythraeum IMS101 was grown with different nitrogen sources (N2 vs NO3 (-)) and pCO2 levels (380 vs 1400 µatm). Cellular Ci fluxes were assessed by combining membrane inlet mass spectrometry (MIMS), (13)C fractionation measurements, and modelling. Aside from a significant decrease in Ci affinity at elevated pCO2 and changes in CO2 efflux with different N sources, extracellular Ci fluxes estimated by MIMS were largely unaffected by the treatments. (13)C fractionation during biomass production, however, increased with pCO2, irrespective of the N source. Strong discrepancies were observed in CO2 leakage estimates obtained by MIMS and a (13)C-based approach, which further increased under elevated pCO2. These offsets could be explained by applying a model that comprises extracellular CO2 and HCO3 (-) fluxes as well as internal Ci cycling around the carboxysome via the CO2 uptake facilitator NDH-14. Assuming unidirectional, kinetic fractionation between CO2 and HCO3 (-) in the cytosol or enzymatic fractionation by NDH-14, both significantly improved the comparability of leakage estimates. Our results highlight the importance of internal Ci cycling for (13)C composition as well as cellular energy budgets of Trichodesmium, which ought to be considered in process studies on climate change effects.
منابع مشابه
Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses.
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO(2) partial pressure (pCO(2)) enhances N(2) fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO(2), its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the ...
متن کاملProcess-understanding of marine nitrogen fixation under global change
In view of the current increase in atmospheric pCO2 and concomitant changes in the marine environment, it is crucial to assess, understand, and predict future responses of ecologically relevant phytoplankton species. The diazotrophic cyanobacterium Trichodesmium erythraeum was found to respond strongly to elevated pCO2 by increasing growth, production rates, and N2 fixation. The magnitude of th...
متن کاملModeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.
A physiological, unbalanced model is presented that explicitly describes growth of the marine cyanobacterium Trichodesmium sp. at the expense of N(2) (diazotrophy). The model involves the dynamics of intracellular reserves of carbon and nitrogen and allows the uncoupling of the metabolism of these elements. The results show the transient dynamics of N(2) fixation when combined nitrogen (NO(3)(-...
متن کاملInorganic carbon dominates total dissolved carbon concentrations and fluxes in British rivers: Application of the THINCARB model - Thermodynamic modelling of inorganic carbon in freshwaters.
River water-quality studies rarely measure dissolved inorganic carbon (DIC) routinely, and there is a gap in our knowledge of the contributions of DIC to aquatic carbon fluxes and cycling processes. Here, we present the THINCARB model (THermodynamic modelling of INorganic CARBon), which uses widely-measured determinands (pH, alkalinity and temperature) to calculate DIC concentrations, speciatio...
متن کاملCombined effects of different CO2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium
To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesi...
متن کامل